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Abstract. This paper reports on some experiments with the implemen-
tation of a concurrent version of a graph reduction system π-red+ on an
nCUBE/2 system of up to 32 processing sites. They primarily concern
basic concepts of workload partitioning and balancing, the relationship
between relative performance gains and the computational complexi-
ties of the investigated programs, resource management and suitable
system topologies. All programs used for these experiments realize di-
vide and conquer algorithms and have been run with varying (sizes of)
data sets and system parameters (configurations).

1 Introduction

Running complex application programs non-sequentially in multiprocessor sys-
tems is known to be a formidable organizational problem. It relates to a pro-
gramming paradigm suitable for exposing problem-inherent concurrency, to the
orderly cooperation of all processes participating in the computation, and to a
process management discipline which ensures a stable overall system behavior
and an efficient utilization of resources.

The outcome of decisions in non-trivial programs and, hence, the workload
they generate generally depends on actual parameter values and can therefore
not be anticipated. This rules out efficient static schedules for non-sequential
processing worked out by the compiler or by the programmer. Instead, workload
partitioning and scheduling should be dynamically controlled by the system in
order to achieve a reasonably balanced workload distribution over the available
processing sites. The course of actions to be taken in concrete situations (states
of program execution) must be inferred by the program code itself (usually by
control constructs which identify opportunities to spark off new processes), in
compliance with the actual states of load distribution.

The functional programming paradigm is known to be perfectly suited for
this purpose. Programs are pure algorithms which are liberated from all proce-
dural elements, feature simple recursive control structures which lend themselves
elegantly to divide and conquer techniques, and - most importantly - they are
free of side-effects, i.e., the determinacy of results is guaranteed by the Church-
Rosser property. The task structures which dynamically evolve when executing



functional programs non-sequentially are strictly hierarchical, communications
are locally confined and governed by tight synchronization margins. Hierarchical
structures also are inherently free of deadlocks.

The simplicity of this concept led to many proposals and system imple-
mentations for non-sequential program execution [AJ89, GH86, HB93, HR86,
Klu83, PvE93, JCSH87, Sch92, SGH+86]. This paper reports on experiences
with the implementation of a concurrent version of the reduction system π-
red+ [SBK92, GKK92] on an nCUBE/2 system. π-red+ is an interactively con-
trolled applicative order graph reducer developed at the University of Kiel which
truthfully realizes the reduction semantics of an applied λ-calculus. It accepts
as input programs of the high-level functional language kir[Klu93] (which is
dynamically typed, statically scoped and strict), and returns as output partially
or completely reduced programs in high-level notation. The run-time system of
π-red+ is based on an abstract stack machine ASM which serves as an interme-
diate level of code generation. The current implementation on the nCUBE/2 uses
an ASM code interpreter written in C. Work on a compiler-backend which con-
verts ASM code into nCUBE/2 machine code is currently in progress.

Our nCUBE/2 configuration comprises 32 processing sites, each equipped
with an nCUBE/2 processor, 16 MBytes of local memory and an autonomous
network communication unit which, in the particular setting, serves up to 5 bit-
serial communication channels per site for data transfers from and to as many
physically adjacent sites. Each channel transmits data bi-directionally at a rate
of roughly 4 Mbits/sec. Each site is controlled by a UNIX-like operating system
kernel nCX.

In the sequel we will outline the basic concept of performing non-sequential
computations with π-red+. We will also briefly describe the implementation of
the system, and in the main part we will discuss in detail performance figures
obtained from running several representative example programs with varying
system parameters.

2 Concurrent Computations in π-red+

The purpose of implementing π-red+ on the nCUBE/2 is to provide a versatile
testbed for a systematic investigation of several ways of exploiting concurrency
wrt

– the organizational measures that are necessary to enforce a stable system
behavior which satisfies essential invariance (safety and liveness) properties;

– workload partitioning (granularity), distribution and balancing, scheduling
disciplines and fairness regulations (if necessary);

– the influence of system configurations (interconnection topologies), task
granularities, algorithmic and communication complexities on the ratios of
useful computations vs process management and communication overhead,
and thus on net performance gains.



As a first step, we investigated divide and conquer computations based on
a system concept which was proposed as early as 1983 [Klu83] and first imple-
mented as a distributed string reduction simulator on a network of four PDP
11/20 processing nodes by 1984 [SGH+86]. The load distribution and perfor-
mance figures obtained from this implementation were rather deceptive due to
the small number of processing sites and, even more so, due to the n2-complexity
problem inherent in string reductions, against which the overhead of communi-
cating program terms among processing sites became almost totally negligible,
yielding nearly ideal performance gains.

With a more advanced hardware platform (up to 32 processing sites, far
more memory capacity, faster communication links) and efficient graph reduction
techniques at hand, which allow for more complex application programs, this
picture is bound to look quite differently.

A typical example for exploiting concurrency in functional programs is the
towers of hanoi problem. It consists in computing the sequence of moves neces-
sary to transfer a stack of disks with different diameters from a location A to
another location B using a third location C where disks can be put away tem-
porarily, so that in all three locations the disks are always stacked up in the order
of monotonically decreasing diameters. In kir-notation, the program looks like
this:

def

hanoi[ n, x, y, z ] = if ( n eq 1)

then << x, y >>

else let k = ( n - 1 )

in ( hanoi [ k, x, z, y ] ++

( << x, y >> ++ hanoi [ k, z, y, x ] ))

in hanoi [ h, A, B, C ]

where ”<” and ”>” are delimiters of n-ary sequences (lists) of elements, ”++”
denotes list catenation, and h denotes the number of disks that are initially on
stack A.

Though the concurrency inherent in this program in the form of the two
recursive calls of hanoi can be easily detected by a compiler, it is in more complex
programs often helpful to make it explicit, using a construct of the form:

letpar

x_1 = e_1, . . ., x_n = e_n

in e .

With it the function hanoi would have to be redefined as:

hanoi [ n, x, y, z ] = if ( n eq 1)

then << x, y >>

else let k = ( n - 1 )

in letpar

p = hanoi [ k, x, z, y ],

q = hanoi [ k, z, y, x ]

in ( p ++ ( << x, y >> ++ q )) .



π-red+ translates letpar-constructs as above into a function application
f e 1 . . . e n, where f denotes a function with the formal parameters x 1 . . . x n

and body e1. Its evaluation under an applicative order reduction regime is re-
cursively defined as

eval(f e 1 . . . e n) = eval(f eval(e 1) . . . eval(e n)) .

The recursive nesting of evals in fact defines a hierarchy of (or a parent-child
relationship between) evaluator instances, of which those that apply to the ar-
gument terms e 1 . . . e n can be executed concurrently, or in any order. We are
free to associate with each evaluator instance a process (or a thread). A parent
process that evaluates the application f e 1 . . . e n may therefore create concur-
rently executable child processes for any subset of its argument terms e 1 . . . e n,
and evaluate the remaining arguments under its own control. The creation of fur-
ther child processes may recursively continue until some upper bound is reached
which saturates the processing capacity of the system.

Concurrent processes within the evolving hierarchy can be scheduled non-
preemptively and truly in any order. Neither different priorities nor fairness
regulations need be taken into consideration.

Stability of the entire computation can be guaranteed by two simple measures
which in fact realize system-specific invariance properties.

The creation of new processes is made dependent on the availability of place-
holder tokens (tickets) in a system-supported finite reservoir. Potential instances
of spawning new processes can only succeed if the appropriate number of tickets
can be allocated (and thereby removed) from the reservoir, otherwise the parent
processes simply continue by evaluating the respective terms under their own
regimes. Terminating processes de–allocate the tickets they hold in possession
and recycle them to the reservoir. Tickets are allocated dynamically on a first
come/first serve basis and under complete system control. The total number of
processes that at any time participate in a computation can never exceed the
number of tickets with which the reservoir was initialized [Klu83].

3 The Implementation of π-red+ on the nCUBE/2

When performing divide and conquer computations in a distributed system,
identical copies of the complete program code are first downloaded into all the lo-
cal memories. Thereupon, one designated processing site starts with some initial
parent process, from where the computation spreads out, by recursive creation
of child processes, over all the other processing sites. In order to avoid idling
processing sites, the process hierarchy ought to unfold several times over the
entire system so that each site holds a pool of processes, of which generally some
are executable and others are temporarily suspended.

Ideal for a simple workload distribution and balancing scheme is a symmetric
system topology in which each processing site

1 Alternatively, any other program term e with subterms e 1 . . . e n that are to be set
up for concurrent evaluation can be brought into this form by pre-processing.



– is either physically or at least logically interconnected with the same number
of adjacent sites;

– has concessions, in the form of tickets held in a local pool, to distribute to
each of its adjacent sites the same number of (child) processes.

Installing concurrent π-red+ on the nCUBE/2 requires a single nCX master
process in each site which runs as a subsystem a tailor-made operating system
kernel which manages reduction processes and also supports the ASM inter-
preter.

The process scheduling scheme realized by the OS kernel is depicted in fig. 1.
In addition to the usual queues and tables, it includes input/output buffer areas
and the local ticket pool.
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Fig. 1. Process scheduling

A program term transmitted to a site for execution enters through the
input buffer, picks up the pointer of a free context frame from the re-

leased queue to create a new process which immediately lines up in the
ready queue (arrow labeled b in the figure). A terminating process returns



its context frame pointer to the released queue, and transmits the normal
form of the program term, via the output buffer, to the site from which it
was received (arrow c).

An active process may create a child process by consuming a ticket from
the local pool, if one is actually available, and by sending the term off, via
the output buffer, to the processing site for which the ticket is designated
(arrow d). Master processes that cannot continue until synchronization with child
processes are temporarily suspended by putting their context frame pointers into
the wait table. An evaluated term that returns, via the input buffer, to a
site synchronizes with its (suspended) parent process and returns its ticket to
the pool (arrow a).

4 Performance Measurements on Selected Example

Programs

In this section we will discuss some performance figures measured on selected
example programs with varying system parameters. All figures are given in terms
of speedups relative to the execution times of the same programs on a single
nCUBE/2 processing site. They are based on the interpretation of ASM code
(which includes reference counting and dynamic type checking).

The programs that were investigated include the following:

hanoi - which computes, by recursive induction, the sequence of disk moves for
the towers of hanoi problem;

det - which computes the determinant of a square-shaped matrix by recursive
expansion along the first row;

mandel - which computes graphical representations of Mandelbrodt sets by re-
cursive division into subsets of rows;

fractal - which computes graphical representations of fractals by recursive
composition of basic structures (with a recursion depth of 10).

They were all run with 2n (n ∈ {1, 2, . . . , 5}) processing sites and with the
following system configurations:

– with all sites of a subsystem logically fully connected, i.e., each site may
create subprocesses on each other site;

– with the subsystems operated as hypercubes, i.e., each site may create sub-
processes on its n physically adjacent sites;

– and the subsystems configured as binary trees.

In both the fully connected and the hypercube configurations, all nodes were
initialized with some k ∈ {1, 2, 4, 8} tickets per interconnection. The tree config-
uration was run with only one ticket per interconnection from an inner node to
a successor node, i.e., the topmost root node could not receive child processes
from, and the leaf nodes were not permitted to create child processes in other
nodes.



Moreover, workload was distributed so that a process executing an applica-
tion f e 1 . . . e n that is earmarked for concurrent evaluation either

– creates processes in adjacent sites for all its subterms e 1 . . . e n as long as
tickets are actually available in the pool, and reduces the remaining terms,
if any are left, under its own regime, or

– it always reduces at least one of the subterms itself (i.e., with a two-fold
expansion of the application problem as the standard case, one subterm is
transferred to another site, the other one is evaluated by the parent process).

The latter distribution scheme is the only one that was applied to tree config-
urations, as otherwise only about half the number of processing sites would be
involved in the computation.

Figures 2, 3, 4 and 5 show, as representative examples, the results of some sys-
tematic performance measurements with varying system parameters and config-
urations for the programs hanoi, det, mandel and fractal. They show relative
performance gains versus system configurations, with hyp<n> denoting hyper-
cubes and sym<n> denoting fully interconnected systems, in each case with n

specifying the number of tickets that is available per interconnection. The ac-
tual number of processing sites is represented by dots of different shapes, which
also distinguish distribution of all (or of as many as possible) subterms, denoted
as dist all, from distribution of all but one subterm, denoted as dist n-1 (the
shapes of the dots are defined in the boxes in the upper right corners).

speedup

1
2

hyp1 hyp2 hyp4 hyp8 sym1 sym2 sym3 sym4 sym8 tree

hanoi_14
8 processors

32 processors
dist all dist n-1

Fig. 2. Solving the towers of hanoi problem for 14 disks

Based on these diagrams, the following general observations can be made.
The overriding factor in achieving performance gains that grow nearly lin-

early with the number of processing sites involved is the ratio between the com-
plexity of the algorithms, measured, say, in numbers of recursion steps or in
numbers of data elements to be processed, and the complexities of communicat-
ing program terms (in most cases essentially data structures) among processing
sites. If this ratio is nearly one (or some other nearly constant value) no signifi-
cant performance gain can be expected.

This may be exemplified by the hanoi program for which both the complexity
of the algorithm and the length of the sequences to be moved among processing
sites are roughly O(2n).

In contrast, the det program has a computational complexity of O(n!),
largely due to the considerable redundancy of the algorithm, and must move
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Fig. 3. Computing the determinant of an 8× 8 matrix

matrices of sizes O(n2). Since n! grows much faster than n2 with increasing n,
performance gains are primarily limited by the number of processing sites and
thus grow linearly with them.

The computational complexities of the two other example programs grow
much faster than the complexities of moving the data structures, and thus yield
performance gains that are nearly linear wrt the number of processing sites.

Another general observation concerns job granularity, which becomes finer
with increasing numbers of tickets. When running the example programs on
the hypercube configurations, the performance figures improve with increasing
numbers of tickets (some slightly drop again when using 8 tickets). One would
expect the opposite effect since creating processes far in excess of the available
processing sites (which definitely is the case with 2 or more tickets per inter-
connection and site) means more management overhead at the expense of useful
computations. However, this negative effect seems to be more than offset, at
least up to 4 tickets, by a more balanced overall workload distribution. With
more processes allocated to each node there are generally more opportunities to
replace terminating processes immediately with executable processes lined up
in the local ready queues. To some lesser extent, the same observations can
be made for some of the example programs with the fully interconnected con-
figuration. However, with the fractal program, we clearly have a performance
degradation with increasing numbers of tickets, as expected.

On average, performance is slightly better if at least one of the concurrently
executable terms is reduced under the control of the parent process, as opposed
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Fig. 4. Computing a 16× 512 points wide subset of the Mandelbrodt set

to creating new processes in adjacent sites for all terms. This phenomenon is
somewhat difficult and speculative to explain. When spawning fewer processes
per instance one would expect that the computation takes more time to spread
out over the available processing sites and thus utilize them less efficiently. How-
ever, the performance data seem to indicate that it inflicts slightly less processing
time spent on management overhead and slightly less idle time caused by parent
processes waiting for synchronization with their child processes. Also, on average
there are slightly more executable processes per site.

The choice between hypercubes and fully interconnected configurations has
only a marginal effect on performance. However, full interconnections cause an-
other problem with increasing numbers of processing sites: since too many pro-
cesses must be accommodated per site, many programs run out of memory space
since the partitions that can be allocated per process become too small. This
explains why some of the dots are missing from the diagrams, e.g., those for the
determinant program executed on 32 processors configured as sym3, sym4, or
sym8.

A tree configuration seems to have a decisive performance edge for all ap-
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Fig. 5. Computing fractals with recursion depth 10

plication problems which unfold reasonably balanced trees, as for instance the
recursive partitioning of the Mandelbrodt problem. The symmetric network con-
figurations do significantly better with application problems that develop unbal-
anced structures as, for instance, the det problem.

Limiting the recursion depth up to which an application problem may be
split up into concurrently executable pieces generally improves the performance
by some 10 to 20 percent since it prevents fine granularities and thus process run-
times that are too short in relation to the overhead of managing them. However,
the same ends can be more easily achieved by adapting the size of the subcube
(or the number of processors participating in the computation) to the size of the
application problem. In order to maintain a high ratio of useful computations
vs communication and process management overhead, it is generally important
that, after exhaustion of all ticket pools, the system engages in lengthy periods
of sequential computations which are only infrequently interrupted by process
switches and data communications. For this to be the case the application prob-
lem must primarily be prevented from spreading out too thinly over too many
processing sites, rather than sustaining a fairly large number of processes per
site.



5 Conclusion

Implementing divide and conquer computations is only a first step towards a
system concept which supports other forms of concurrent computations based
on functional program specifications as well. Absolutely essential for this model
are systems of cooperating functional processes which communicate via classical
message passing mechanisms. Typical examples are (multigrid) relaxations for
numerical solutions of PDEs which may require parameter-controlled recursive
refinements of mesh sizes to compute critical parts, say of a fluid dynamics
application, with higher resolution. However, there are also many ‘stand-alone’
applications for the divide and conquer scheme, e.g., in rule-based computations
which typically unfold large search trees.

The performance figures presented in this paper are not yet too conclusive
for two reasons. Firstly, we have so far investigated only small programs with
fairly predictable behavior, balancing the dynamically evolving workload rea-
sonably well (which is essential for good performance gains). More serious and
complex application programs suitable for divide and conquer computations are
currently under investigation. Secondly, all measurements are based on the in-
terpretation of abstract machine code. The interpretation includes dynamic type
checking (which typically accounts for 20 % of the total run-time) and reference
counting for earliest possible release of unused heap space (which accounts for
another 20 to 30 %). The speed of executing compiled nCUBE/2 machine code
vs interpreting ASM code can be expected to improve by about an order of
magnitude, while the overhead for process management and data communica-
tion remains about the same. Hence, the performance gains measured for our
example programs may decrease considerably unless they are offset by decidedly
larger problem sizes.

To put the absolute performance of the (sequential) ASM-interpreter into
perspective, we did some comparative run-time measurements with imple-
mentations of the same algorithms in haskell[HJW+92], clean[PvE93], and
sisal [Can93], using standard compilers2,3,4 for these languages and a Sun
Sparc 10/20 as the common system platform. Fairly representative for all exam-
ples are the run-time figures for the fractal program. The sequential ASM inter-
preter takes 675.1 seconds, the haskell code executes in 123.3 seconds, and the
fastest implementations, clean and sisal , take 67.8 seconds and 52.1 seconds
respectively. The sisal code runs about as fast as an equivalent C program
(51.8 seconds). Thus, ASM code interpretation is slower by roughly a factor of
10 to 12 than the code produced by the thoroughly optimized clean and sisal

compilers.

Work on a compiler which translates ASM-code into C is currently in
progress. A first non-optimized version which still includes dynamic type-
checking and reference counting improves runtime performance by about a factor

2
haskell Version 0.999.5 of Chalmers University

3
clean Version 0.84 of the University of Nijmegen

4
sisal Version 1.8 of Lawrence Livermore National Laboratory



of 5 relative to interpretation. A concurrent version will be implemented after
all optimizations are done.
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