
Preliminary Experience with a

π-red+ Implementation on an

nCUBE/2 System

Torsten Bülck, Achim Held, Werner Kluge, Stefan Pantke,
Carsten Rathsack, Sven-Bodo Scholz, Raimund Schröder ∗

March 27, 2021

Abstract

This paper reports on some preliminary experiments with the imple-
mentation of a concurrent version of the reduction system π-red+ on
an nCUBE/2 system of up to 32 processing sites. They primarily con-
cern basic concepts of workload partitioning and balancing, the relation-
ship between relative performance gains and the computational complex-
ities of the investigated programs, resource management and suitable
system topologies. All programs used for these experiments realize di-
vide and conquer algorithms and have been run with varying (sizes of)
data sets and system parameters (configurations).

1 Introduction

This paper reports on some preliminary experience with a very recent implemen-
tation of a concurrent version of the reduction system π-red+ [SBK92, GKK92]
on an nCUBE/2 system. We favored a distributed over a shared memory sys-
tem primarily for reasons of scalability, but also for the more challenging or-
ganizational problems which make it attractive from a research point of view.
The choice of an nCUBE/2 system was primarily motivated by the problem-free
portability (and adaptability) of existing code, the ease with which different sys-
tem topologies may be configured, and by quality of the software (tool) support
and cost/hardware-machinery considerations, but less so by peak performance
figures.

π-red+ is an applicative order graph reducer which realizes the reduction
semantics of an applied λ-calculus. It accepts as input programs of either of the
high-level functional languages kir or orel/2[Klu93, SP90] (both of which are
dynamically typed, statically scoped and strict) and returns as output partially
or completely reduced programs in high-level notation.

The run-time system of π-red+ is based on an abstract stack machine
ASM[Gär91] which serves as an intermediate level of code generation. The cur-
rent implementation on the nCUBE/2 uses an ASM code interpreter written in

∗Christian-Albrechts-Universitaet Kiel, Institut fuer Informatik, D–24105 Kiel, Germany,

E–mail: base@informatik.uni–kiel.d400.de

1



C. Work on a compiler-backend which converts ASM code into nCUBE/2 ma-
chine code is currently in progress.

The nCUBE/2 system comprises 32 processing sites, each equipped with
an nCUBE/2 processor and 16 MBytes of memory. The processors include
autonomous network communication units which may serve 14 bit-serial com-
munication channels per site. The actual system configuration uses up to five of
these channels in each site for data transfers from and to as many adjacent sites,
and one channel for input/output. Each channel transmits data bi-directionally
at a rate of roughly 5 Mbits/sec.

The nCUBE/2 processor features a CISC architecture similar to the MC
68000 wrt instruction set and addressing modes. 16 registers (not including
program counter and stack pointer registers) are available for general purposes.
Each site runs an operating system kernel nCX.

The implementation of π-red+ on the nCUBE/2 requires on each site a
single nCX master process, under which run the ASM interpreter, a tailor-made
micro-kernel which manages several reduction processes as subprocesses, and a
process monitoring subsystem.

In the sequel we will outline the basic concept of performing non-sequential
computations with π-red+[Klu83, SGHKW86]. We will also briefly describe
the implementation of the micro-kernel and of the event monitoring subsystem
which produces run-time data that allow us to extract performance figures and
to re-construct in slow motion on a graphical display the creation, allocation and
termination of processes within the system. In the main part we will discuss in
detail performance figures obtained from running several representative example
programs with varying system parameters.

2 Concurrent Computations in π-red+

Our plan is to systematically investigate, by means of the π-red+ implemen-
tation on the nCUBE/2 systems, various forms of exploiting concurrency in
functional systems, among them

• the classical demand-controlled divide and conquer approach which di-
rectly derives from the recursive nature of functional programs;

• cascading recursive function calls via streams;

• speculative evaluations in alternative program terms;

• systems of cooperating functional processes that communicate via streams.

As a first step, we implemented divide and conquer computations, which
will be the subject of this paper.

They may be made explicit in high-level functional programs by a construct
of the form:

letcon

x_1 = e_1, ... ,x_n = e_n

in e

2



which translates into a λ-term f e 1 . . . e n, where f denotes an abstraction
λ x 1 . . . λ x n e 1. Its evaluation under an applicative order reduction regime
is recursively defined as

eval(f e 1 . . . e n) = eval(f eval(e 1) . . . eval(e n)) .

The recursive nesting of evals defines a hierarchy of (or a parent-child relation-
ship between) evaluator instances, of which those that apply to the argument
terms e 1, . . . , e n can be executed concurrently, or in any order. We are free to
associate with every evaluator instance a process. A parent process that eval-
uates the application f e 1 . . . e n may therefore create concurrently executable
child processes for any subset of its argument terms, and evaluate the remaining
arguments under its own control. The creation of further child processes may
recursively continue until some upper bound which saturates the processing
capacity of the system is reached.

A typical interaction scheme between parent and child processes, as it is
realized in π-red+, is depicted in fig. 1. Here a process is completely specified
by a triple < p, t, [e, k] >, of which [. . .] contains its changeable parts [Klu83,
SGHKW86]. In particular

e denotes the program term executed under the control of the process;

k denotes a count value which gives the actual number of reduction steps the
process is still allowed to perform on e (and must be decremented upon
each instance of a reduction);

p identifies the parent process by which the process under consideration was
created and to which it must eventually return the partially or completely
evaluated term e;

t denotes a unique place-holder token which identifies, in the term executed by
the parent process p, the syntactical position into which the (partially)
evaluated term e must be inserted.

The figure shows a parent process pm which originates from yet another
process pp. In the course of evaluating the application f e 1 . . . e n, it creates
child processes p1, . . . pi for the argument terms e 1, . . . , e i in that it abstracts
them out and replaces them with the place–holder tokens t1, . . . ti, respectively.
These tokens are also inserted into the respective child process triples. All child
processes are also initialized with the actual reduction count value k of the
parent process pm.

The processes pm and p1, . . . pi can now proceed concurrently to reduce the
argument terms. Synchronization between parent and child processes occurs
upon termination of the latter, either after having decremented their count val-
ues to zero or after having reached the (weak) normal forms of their terms,
denoted as e 1N , . . . , e iN (which is the situation shown in the figure). Synchro-
nization includes the substitution of the place-holders in the term reduced under
the control of the parent process by the evaluated argument terms that return
from the child processes. Thereupon, the parent process pm may continue to

1Alternatively, any other program term e with subterms e 1 . . . e n that are to be set up

for concurrent evaluation can be brought into this form by pre-processing.

3



< pp, tp, [f e 1 . . . e i e i+ 1 . . . e n | k + 1] >

< pp, tp, [f t1 . . . ti e i+ 1 . . . e n | k] >

< pm, ti, [e i | k] >

< pm, t1, [e 1 | k] >

< pm, t1, [e 1N | k1] >

< pm, ti, [e iN | ki] >

< pp, tp, [f t1 . . . ti e i+ 1N . . . e n′ | k0] >

< pp, tp, [f e 1N . . . e iN e i+ 1N . . . e n′ | min[k0, . . , ki]] >

❄

❄

❄

❄

❄

❄

✲

❄

❄

✛

✲

❄

❄

✛

✞

✝

☎

✆
pm

✞

✝

☎

✆p1
✞

✝

☎

✆pi

Figure 1: Process interaction under demand-controlled divide and conquer com-
putations

reduce the remaining application, with the count value k set to the minimum
of the count values left over by all processes at the point of synchronization.

Concurrent processes within the evolving hierarchy can be scheduled non-
preemptively and truly in any order. Neither different priorities nor fairness
regulations need therefore be taken into consideration.

Stability of the entire computation can be guaranteed by two simple mea-
sures which in fact realize system-specific invariants. The creation of new pro-
cesses is made dependent on the availability of place-holder tokens in a system-
supported finite reservoir. Potential instances of spawning new processes can
only succeed if the appropriate number of tokens can be allocated (and thereby
removed) from the reservoir, otherwise the parent processes simply continue by
evaluating the respective terms under their own regimes. Terminating processes
de–allocate the tokens they hold in possession and recycle them to the reser-
voir. Tokens are allocated dynamically on a first come/first serve basis and

4



under complete system control. The total number of processes that at any time
participate in a computation can never exceed the number of tokens with which
the reservoir was initialized [Klu83].

The primary purpose of counting reduction steps is to terminate in an or-
derly form potentially non-terminating recursions. An initial count value which
the user is asked to specify prior to every program run is monotonically decre-
mented upon each reduction step. Even though actual count values are repli-
cated whenever new processes are being created, they are bound to decrement to
zero eventually. The entire computation comes to a halt if this value is reached
in any of the branches of the process hierarchy since points of process synchro-
nization pass on the minimal count value of any of the synchronized processes.
Irrespective of the way a computation terminates, the system always assembles
a complete program (either fully or partially reduced) which is returned to the
user in high-level notation.

3 The Implementation of π-red+ on the

nCUBE/2

When performing divide and conquer computations in a distributed memory
system, one processing site (to which we will henceforth refer as site 0) usually
starts with some initial parent process, from where the computation spreads out
over all the other processing sites. A process that executes in a particular site
may create child processes in topologically adjacent sites until all sites eventually
become active, provided the particular application problem yields as much con-
currency. In order to avoid idling processing sites, the process hierarchy ought
to unfold several times over the entire system so that each processing site holds
a pool of processes, of which some are executable and others are temporarily
suspended.

Balancing the workload irrespective of sizes and structures of the application
problems requires full system control over the partitioning of programs into
concurrently executable pieces and their allocation to processing sites. This
must be done in compliance with specific program properties on the one hand
and the availability of system resources (processing and memory capacity) on
the other hand. Ideal for a simple workload distribution and balancing scheme
is a symmetric system topology in which each processing site

• is either physically or at least logically interconnected with the same num-
ber of adjacent sites;

• has concessions, in the form of tickets held in a local pool, to distribute
to each of its adjacent sites the same number of (child) processes; the
concessions (tickets) may be claimed by any of the processes executing in
the site.

In an nCUBE/2 (or subcube) of some 2n processing sites there are n im-
mediate neighbors to each site. With k tickets per neighbor available in each
site, we may have up to 2n ∗ n ∗ k+1 processes in the system at anyone time 2.

2In addition to the n ∗ k processes it receives from its adjacent sites, there may be one

more process in site 0.

5



However, since all site-to-site data transfers are transparent to the user, any
other system topology (e.g., all sites are fully connected or interconnected as a
tree) may be logically realized on the nCUBE/2 as well.

Installing concurrent π-red+ on the nCUBE/2 requires a single nCX mas-
ter process in each site which runs as a subsystem a tailor-made operating sys-
tem kernel which manages reduction processes. The subsystem also includes
the ASM interpreter (or processor) and a process monitor.

The process scheduling scheme realized by the OS kernel is depicted in fig. 2.
In addition to the usual queues and tables, it includes input/output buffer areas
and the local ticket pool.

The buffer areas serve as interfaces between the nCX master process and the
network communication unit. Every program term arriving at a site through
one of the interconnection lines is written into the input buffer, from where the
nCX process copies it into its own address space. Conversely, every program
term that must be transferred to some other site is by the nCX process written
into the output buffer, from where the network communication unit takes over.

The local ticket pools are initialized with some n ∗ k tokens, of which k each
are designated for process creation in one of the n adjacent sites.

✏✏✏✏✏
✏✏✏✏✏

✄
✄
✄

✄
✄
✄

❄ ❄

❄❄

✲

✲

✻
✲

✛
✛

✛

✛ r

r ❡

✲

✲

✲

r

r

r

asm
processor

ticket pool

ready queue

wait table

released queue

table
process

input/output buffers

d c b a

Figure 2: Process scheduling

The process table is implemented as an array of n ∗ k context block frames

6



since each site may receive as many program terms for processing as it has con-
cessions (tickets) to send terms off to other sites. Pointers to unused context
blocks are held in the released queue. The ready queue and the wait table

respectively hold pointers to context blocks of executable processes and of par-
ent processes waiting for the synchronization with child processes. These data
structures too must provide for n ∗ k pointer entries 3.

A program term transmitted to a site for execution enters through
the input buffer, picks up the pointer of a free context frame from the
released queue to create a new process which immediately lines up in the
ready queue (arrow labeled b in the figure). A terminating process returns
its context frame pointer to the released queue and the normal form of the
program term, via the output buffer, to the site from which it was received
(arrow c).

An active process may create a child process by consuming a ticket from
the local pool, if one is actually available, and by sending the term off, via the
output buffer, to the processing site for which the ticket is designated (arrow
d). Master processes that cannot continue until synchronization with child
processes are temporarily suspended by putting their context frame pointers
into the wait table. An evaluated term that returns, via the input buffer, to
a site synchronizes with its (suspended) parent process and returns its ticket to
the pool (arrow a).

4 The Process Monitoring System

In order to obtain some accumulative performance figures and to gain insight
into the actual course of program execution, our nCUBE/2 implementation has
been augmented by a process monitoring systems. It records in each processing
site individually relevant events such as the creation, termination and other
status changes of processes, the allocation and de-allocation of heap space, the
transmission of messages, etc. These events are in their order of occurrences over
time written into site-specific monitor files, as the computation proceeds. After
termination, all monitor files are merged into one, again with all events ordered
in time, and the merged file may then be passed on to some evaluation and
display tool which produces graphical output, either in the form of performance
plots or in the form of a graphical animation which shows what was going on
in the system during program execution.

A major design objective for the monitoring system was to provide some
degree of freedom in choosing the events that are to be recorded for subsequent
evaluation, and to have the recording interfere with, and thus distort, as lit-
tle as possible the reduction processes proper. This can largely be achieved
by generating, as an integral part of compiling application programs to ASM
code, dedicated monitor instructions which produce event-specific entries in the
monitor files. Inserting these instructions into the ASM code is controlled by
parameters that specify the chosen (sub)set of events. However, the selection
of events that relate to process scheduling and memory (heap and stack) man-
agement must be handled differently since they are effected by the micro-kernel
code which cannot be changed between program runs. Instead, the monitoring

3The data structures in processing site 0 must have one more entry to accommodate the

initial process.

7



system provides a set of library monitor functions from which the ones that are
to be effective during a program run are accessed via a function table.

The evaluation and display tool provides a rich variety of features which can
be easily extended by the user. To customize the analysis and to create graph-
ical displays, the merged monitor file is piped through a script that produces
graphics control sequences which drive the front-end of the display tool. These
control sequences either produce plots of accumulative performance figures or
re-play in slow motion the computation as it proceeds in time and spreads out
over the processing sites, e.g., in terms of actual process slot or memory space
allocation, or in terms of processor/memory utilization.

The main analysis module generates plots which simply relate two quanti-
ties to each other. These quantities may be data that are either directly read
from the monitor file or obtained after some complex computations. The re-
spective program modules are contained in scripts that are either provided by
the monitoring system or specified by the user in a superset of C.

A special display module is available for animation purposes. For instance,
to display process allocation over time it creates a plot as depicted in fig. 3.
Along the vertical and horizontal axes it respectively displays processing sites
and available process slots in each site. The slots are filled with different colors
to indicate whether or not a process is allocated at all, nd if so, in which state
it is (executing, ready for execution, or suspended). The small square on the
right depicts on a percentage basis the accumulated processor utilization for
reductions, communication handling, and idle times (from left to right). The
path through the process slots in different sites connects processes that are in
a parent-child relationship with each other, with the topmost parent process in
the upper left corner. The situation shown in this figure is a snapshot taken at
some instant in time.

Figure 3: Process layout and workload balancing

8



5 Performance Measurements on Selected Ex-

ample Programs

In this section we will discuss some performance figures measured on selected
example programs with varying system parameters. All figures are given in
terms of speedups relative to the execution times of the same programs on
a single nCUBE/2 processing site. They are based on the interpretation of
ASM code rather than on the execution of compiled nCUBE/2 machine code.
Since the latter can be expected to be faster than the former by up to an
order of magnitude and more, depending on particularities of the application
programs, the respective figures for compiled nCUBE/2 code are bound to look
decidedly less favorable. Nevertheless, the data obtained from interpretation at
least indicate to which extent system configuration (network topology), system
parameters and program properties influence workload distribution, balancing
and performance gains.

The programs that were investigated are the following:

fib - which computes the Fibonacci numbers by two-fold recursive induction;

towers - which computes the sequence of disc moves for the towers of hanoi prob-
lem, again by recursive induction;

quick - which quicksorts a sequence of unsorted numbers (the sequences are
chosen so that they recursively break up into about equally sized subse-
quences);

queens - which solves the n-queens problem in that it computes all possible place-
ments by recursively separating a first placement from the remaining place-
ments;

det - which computes the determinant of a square-shaped matrix by recursive
expansion along the first row (multiplication of the leftmost uppermost
element with the matrix from which the first row and the first column are
dropped);

pat mat - which searches, by recursive partitioning, through a square-shaped ma-
trix of numbers for occurrences of a specific submatrix;

red add - which recursively partitions a matrix along rows into equally sized sub-
matrices and performs reductions by addition along the columns;

ma mult - which recursively partitions matrix multiplications into multiplications
of equally sized submatrices;

mandel - which computes graphical representations of Mandelbrodt sets by recur-
sive division into subsets.

They were all run with the following system configurations:

• with (sub)systems of 2n processing sites, and n ∈ {1, 2, . . . , 5};

• with all sites of a subsystem logically fully connected, i.e., each site may
directly communicate program terms to each other site;

9



• with the subsystems operated as hypercubes, i.e., each site may directly
communicate with the n adjacent sites whose addresses differ in just one
binary position;

• and, as somewhat exotic configurations, with the subsystems configured
as trees.

In both the fully connected and the hypercube configurations, all nodes were
initialized with some k ∈ {1, 2, . . . , 8} tickets per interconnection. In the tree
only one concession per interconnection from an inner node to a successor node
made sense, i.e., the topmost root node could not receive child processes and
the leaf nodes were not permitted to create child processes in other nodes.

Moreover, workload was distributed so that a process which executes an
application f e 1 . . . e n that is earmarked for concurrent evaluation

• either creates processes in adjacent sites for all its subterms e 1, . . . , e n

as long as tickets are actually available in the pool and reduces the re-
maining terms, if any are left, under its own regime;

• or it always reduces at least one of the subterms itself (i.e., with a two-fold
expansion of the application problem as the standard case, one subterm
is transferred to another site, the other one is evaluated by the parent
process).

The latter distribution scheme is the only one that has been applied to tree
configurations, as otherwise only about half the number of processing sites would
be involved in the computation.

In some of the programs we also used thresholds on the recursion depth
beyond which the creation of new processes is surpressed irrespective of the
availability of tickets. This measure is intended to prevent the job granularity
from becoming too fine in relation to the overhead involved in creating new
processes.

Figures 4, 5, 6 and 7 show, as representative examples, the results of some
systematic performance measurements with varying system parameters and con-
figurations for the programs quick, det, mat mult and mandel. They show
relative performance gains versus system configurations, with hyp<n> denoting
hypercubes and sym<n> denoting fully inter connected systems, in each case
with n denoting the number of tokens that is available per interconnection.
The actual number of processing sites is represented by dots of different shapes,
which also distinguish distribution of all (or of as many as possible) subterms,
denoted as dist all, from distribution of all but one subterm, denoted as dist
n-1 (the shapes of the dots are defined in the boxes in the upper right corners).
Based on these diagrams, the following general observations can be made which
also apply to the programs for which no performance figures are shown.

The overriding factor in achieving a performance gain that grows nearly
linearly with the number of processing sites involved is the ratio between the
complexity of the algorithm, measured, say, in numbers of recursions or in num-
bers of data elements to be processed, and the complexity of communicating
a program term (in most cases a data structure) from one processing site to
another. If this ratio is nearly one (or some other nearly constant value) no
significant performance gain can be expected. This may be exemplified by the
quick program on the one hand, and the det program on the other hand. In

10



speedup

1

2

3

hyp1 hyp2 hyp4 hyp8 sym1 sym2 sym3 sym4 sym8 tree

quick-eq_2000
2 processors
4 processors
8 processors

16 processors
32 processors

dist all dist n-1

Figure 4: Sorting a list of 2000 elements

speedup

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

hyp1 hyp2 hyp4 hyp8 sym1 sym2 sym3 sym4 sym8 tree

det_8
2 processors
4 processors
8 processors

16 processors
32 processors

dist all dist n-1

Figure 5: Computing the determinant of an 8× 8 matrice

the former case, the complexity of the algorithm is O(n ∗ lg n) and the length
of the sequences to be moved among processing sites is n , hence the perfor-
mance gain can only be marginal. In the latter case, we have a computational
complexity of O(n!) and must move matrices of sizes (n2). Since n! grows much
faster than n2 with increasing n, performance gains are primarily limited by the
number of processing sites and thus grow linearly with them.

Other bad candidates for performance gains are the towers of hanoi program

11



speedup

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

hyp1 hyp2 hyp4 hyp8 sym1 sym2 sym3 sym4 sym8 tree

psimult_128
2 processors
4 processors
8 processors

16 processors
32 processors

dist all dist n-1

Figure 6: Multiplying two 128× 128 matrices

and reduction along rows or columns of a matrix. The computational complex-
ities of all other programs that were investigated grow much faster than the
complexities of moving the data structures and thus yield performance gains
that are nearly linear wrt the number of processing sites.

The cause of this phenomenon is predominantly of a purely technical nature.
Since the nCX master processes which in each site run the reduction system
proper communicate with the network communication units through dedicated
buffer areas, the nCUBE/2 processors are always involved in site-to-site data
transfers in that they have to load and unload these buffers. The time that must
be devoted to these transfers is taken away from useful computations. Thus,
with computational complexities about the same as transfer complexities, there
is little difference, as far as total program run-time is concerned, between dis-
tributing the computation over several processing sites versus doing everything
sequentially in one site.

Somewhat surprising is the observation that for all example programs run-
time performance significantly improves with increasing numbers of tickets and
thus with increasing granularities of the computations performed by the pro-
cesses. As in shared memory systems, one would expect the opposite effect
since creating processes far in excess of the available processing sites (which
definitely is the case with 2 or more tickets per interconnection and site) means

12



speedup

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

hyp1 hyp2 hyp4 hyp8 sym1 sym2 sym3 sym4 sym8 tree

mandel_dc_16x512
2 processors
4 processors
8 processors

16 processors
32 processors

dist all dist n-1

Figure 7: computing a 16× 512 points wide subset of the Mandelbrodt set

more management overhead at the expense of useful computations. However,
this negative effect is more than offset by a more balanced overall workload dis-
tribution. With more processes allocated to each node there are generally more
opportunities to replace terminating processes immediately with executable pro-
cesses lined up in the local ready queues, as watching the respective animation
movies confirms.

On average, performance is slightly better if at least one of the concurrently
executable terms is reduced under the control of the parent process, as opposed
to creating new processes in adjacent sites for all terms. This phenomenon is
somewhat difficult and speculative to explain. When spawning fewer processes
per instance one would expect that the computation takes more time to spread
out over the available processing sites and thus utilize them less efficiently. How-
ever, the performance data and the animation movies seem to indicate that it
inflicts slightly less processing time spent on management overhead and slightly
less idle time due to parent processes waiting for synchronization with their

13



child processes. Also, on average there are slightly more executable processes
per site.

The choice between hypercubes and fully interconnected configurations has
only a marginal effect on performance. However, full interconnections cause
another problem with increasing numbers of processing sites: since too many
processes must be accommodated per site, many programs run out of memory
space since the partitions that can be allocated per process become too small.
A tree configuration seems to have a decisive performance edge for all applica-
tion problems which unfold reasonably balanced trees, as for instance matrix
multiplication or the recursive partitioning of the Mandelbrodt problem. The
symmetric network configurations do significantly better with application prob-
lems that develop unbalanced structures (as, for instance, the queens problem).

Limiting the recursion depth up to which an application problem may be
split up into concurrently executable pieces generally improves the performance
by some 10 to 20 percent since it prevents fine granularities and thus process
run-times that are too short in relation to the overhead of managing them.
However, the same ends can be more easily achieved by adapting the the size
of the subcube (or the number of processors participating in the computation)
to the size of the application problem. In order to maintain a high ratio of
useful computations vs communication and process management overhead, it
is generally important that after exhaustion of all ticket pools the system en-
gages in lengthy periods of sequential computations which are only infrequently
interrupted by process switches and data communications. For this to be the
case the application problem must primarily be prevented from spreading out
too thinly over too many processing sites rather than sustaining a fairly large
number of processes per site.

6 Conclusion

The current nCUBE/2 implementation of π-red+ is operational since May ‘93
and reasonably stable since July ‘93. The performance measurements discussed
in this paper are only of a preliminary nature for two reasons. Firstly, we
have so far investigated only the usual set of toy programs with very pre-
dictable behavior. More serious and complex application programs suitable
for divide and conquer computations are currently being developed as part of
a graduate programming course. Secondly, all measurements are based on the
interpretation of abstract machine code and thus are not very conclusive wrt to
performance figures that can be obtained from executing compiled nCUBE/2
code. While the overhead for process management and data communication
remains about the same, the speed of executing compiled nCUBE/2 code vs
interpreting ASM code can be expected to improve by at least an order of mag-
nitude, i.e., the performance gains of non-sequential processing may depreciate
considerably. It is not yet clear whether they can be offset in all cases by de-
cidedly larger problem sizes as they also require more processing time for data
transfers.

14



References

[Gär91] D.Gärtner: π-red+: Ein Interaktives Codeausführendes Reduktionssys-

tem zur Vollständigen Realisierung eines Angewandten λ-Kalküls. PhD
Thesis (in German), Internal report, University of Kiel, 1991

[GKK92] D.Gärtner, A.Kimms, W.E.Kluge: π-red+—A Compiling Graph Re-

duction System for a Full Fledged λ-Calculus. Proc. of the 4th Interna-
tional Workshop on Parallel Implementation of Functional Languages,
eds H.Kuchen, R.Loogen, University of Aachen, 1992

[Klu93] W.E. Kluge: A User’s Guide for the Reduction System π-red. Internal
report, University of Kiel, 1993

[Klu83] W.E.Kluge: Cooperating Reduction Machines. IEEE Transactions on
Computers, Vol. C-32, No 11, 1983, pp. 1002-1012

[SBK92] C.Schmittgen, H.Blödorn, W.E.Kluge: π-red∗- a Graph Reducer for

Full-Fledged λ-Calculus. NGC, Vol. 10 No 2, Ohmsha and Springer Ver-
lag, 1992, pp. 173-195

[SGHKW86] C.Schmittgen, A.Gerdts, J.Haumann, W.E.Kluge, M.Woitass: A

System-Supported Workload Balancing Scheme for Cooperating Reduc-

tion machines. 19th Hawaii International Conference on System Sci-
ences, Vol. I, 1986, pp. 67-77

[SP90] H.Schlütter, E.Pless: Die Reduktionssprache Orel/2. Technical report,
Gesellschaft für Mathematik und Datenverarbeitung, 1990

15


